Novel polymer-synthesized ceramic composite-based system for bone repair: an in vitro evaluation.

نویسندگان

  • Yusuf M Khan
  • Dhirendra S Katti
  • Cato T Laurencin
چکیده

The emergence of synthetic bone repair scaffolds has been necessitated by the limitations of both autografts and allografts. Several candidate materials are available including degradable polymers and ceramics. However, these materials possess their own limitations that at least in part may be overcome by combining the two materials into a composite. Toward that end, a novel approach to forming a polymer/ceramic composite has been developed that combines degradable poly(lactide-co-glycolide) microspheres and a poorly crystalline calcium phosphate that is synthesized within the microspheres, which are then fused together to form a porous three-dimensional scaffold for bone repair. The design, fabrication, and characterization of the composite microspheres, the calcium phosphate formed within these microspheres, and the formation of scaffolds were studied. The calcium phosphate formed was analyzed by x-ray diffraction, Fourier transform infrared spectroscopy, and energy dispersive spectroscopy, and was shown to be similar to native bone in both composition and crystallinity by controlling certain processing parameters such as mixing time, solution pH, and mixing temperature. Scaffolds with porous interconnected structures and mechanical properties in the range of trabecular bone were fabricated via precise control of polymer/ceramic ratios within the microspheres and scaffold heating times. This composite scaffold represents a new and important vehicle for bone-tissue engineering.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of fiber reinforced polymer scaffolds based on natural fibers and polymer for bone tissue engineering application

A wide range of materials and scaffolding fabrication methods for bone tissue engineering have beenexplored recently. Fiber reinforced polymers (FRP) system appears to be a suitable system. By the exclusiveuse of biocompatible or bio-absorbable polymers and fibers, novel generation of scaffolds for applicationsin tissue engineering can be prepared. Mulberry Silk as highlighted...

متن کامل

Fabrication of PGS/CaTiO3 Nano-Composite for Biomedical Application

Biodegradable elastomeric materials are gaining extensive attention in the field of soft tissue engineering. Poly (glycerol sebacate) (PGS) is a novel biocompatible elastomer in this scope. However this polymer has poor mechanical properties especially when the molar ratio of glycerol is higher than sebacic acid. Calcium Titanate (CaTiO3) is a biocompatible ceramic with some degr...

متن کامل

Ballistic Performance of Hybrid Armor with Ceramic Inserts and Polymeric Matrix for Different Threat Levels (TECHNICAL NOTE)

  Ceramic materials due to their high compressive strength and hardness have been one of prime candidates in armor design in particular when high level threads (impact velocity above 600m/s) are involved. The aim of this work is to investigate ballistic impact resistance potential for a target plate with novel ceramic inserts as against ceramic tiles. Two size 98% alumina (AL2O3) base ceramic i...

متن کامل

Poly (lactic-co-glycolic)/nanostructured merwinite porous composites for bone tissue engineering: II. structural and in vitro characterization

Several characteristics of a novel PLGA/Merwinite scaffold were examined in the present study to evaluate the possible applications in bone tissue regeneration. Physical and mechanical properties, as well as degradation behavior and in vitro bioactivity of porous scaffolds produced by solvent casting and particle leaching technique were also characterized. Results showed that incorporation of m...

متن کامل

Composite Nanoscaffolds Modified with Bio-ceramic Nanoparticles (Zn2SiO4) Prompted Osteogenic Differentiation of Human Induced Pluripotent Stem Cells

Nanofiber scaffolds and bio-ceramic nanoparticles have been widely used in bone tissue engineering. The use of human induced pluripotent stem cells (hiPSCs) on this scaffold can be considered as a new approach in the differentiation of bone tissue. In the present study, a polyaniline-gelatin-polycaprolactone (PANi-GEL-PCL) composite nanoscaffold was made by electrospinning and modified superfic...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of biomedical materials research. Part A

دوره 69 4  شماره 

صفحات  -

تاریخ انتشار 2004